
RETHINKING CYBER SECURITY
Eugene H. Spafford

Purdue University CERIAS
http://ceri.as

http://ceri.as

WHAT IS SECURITY?

• If we talk about a system being “secure” what do
we really mean?

• If we talk about “security features,” what are they?

CYBER
SECURITY

Let’s start with an intuitive
definition: a system is secure if it is

protected against all forms of
threat.

This is what most current
commercial entities claim they do:

make your systems secure.

CYBER
SECURITY

Random hackers?

Check!

(Well, usually)

CYBER
SECURITY

Malware?

Probably.

CYBER
SECURITY

Nation State Hackers?

Probably not.

CYBER
SECURITY

UFO Invasion?

What? No!

CYBER
SECURITY

Extinction Event Meteor
Impact

Definitely not.

CYBER
SECURITY

Maybe if we set up colonies
on Mars and give them

backup copies?

(In “the cloud” to a greater
degree)

CYBER
SECURITY

Maybe if we set up colonies on
Mars and gave them backup

copies?

No, eventual death of the Sun will
mean end of the inner planets.

CYBER SECURITY

• As a definition, maybe that
isn’t helpful — we can’t
ever achieve it.

• Actually, this exposes an
issue: security is, at its heart,
an economics issue —
managing risk.

Ri
sk

 o
f L

os
s

0%

20%

40%

60%

80%

100%

Cost

0 $1B $10B $100B $1T

IN REALITY…
Absolute security is unattainable. It is also dependent on context and
resources.

• Robert Courtney articulated this with his 3 laws back in the 1970s:

• Nothing useful can be said about the security of a mechanism except
in the context of a specific application and environment.

• Never spend more mitigating a risk than tolerating it will cost you.

• There are management solutions to technical problems but no
technical solutions to management problems.

ANOTHER ATTEMPT

Let’s approach this as a problem of software
and hardware design. Can we do a better
job?

Allowed
States

There are a set of states that are  
known to be “okay” or “safe.”

Initial research in the 1970s and 1980s looked at 
system state.

Allowed
States

Each valid operation results in a state of the
system that is also defined to be “okay.”

As a system executes, it changes state.

Allowed
States

We also have “bad” states. We don’t want these to occur.

Allowed
States

Bad
States

Allowed
States

 We don’t want execution to enter “bad” states.
We especially don’t want to remain in them.

• This notion of “allowed states” is a match to
the concept of “system requirements” in
software engineering. Next step execution
coresponds to “system specifications.”

• Execution of a state not in the specification is a
“fault” that can result in a “failure.” A failure in
a protected system is a security failure.

We also have “undefined” states. These aren’t specified.

Entering undefined states is problematic. This may lead to
a fault, or it could lead back into a defined state.

Undefined states might not be “bad” states.

They might even lead back to “okay” states.
Because they are undefined, we do not know.

What the typical state-space probably really looks like

• Most software today operates in the
“undefined” state space because we have never
defined its proper behavior.

• We may have general requirements, but no
completely-defined requirements, and definitely
no specifications.

• Formal specifications are time-consuming and
expensive. They also require expertise to
define, and to build software to match.

INDUSTRY PRACTICE

Minimum training

The writers got it in Jurassic Park

THE CONSEQUENCE OF
“DESIGN”

A program that has
not been specified
cannot be incorrect;
it can only be
surprising.

Proving a Computer System
Secure, W. D. Young, W.E.
Boebert and R.Y. Kain, The
Scientific Honeyweller (July,
1985), vol. 6, no. 2, pp. 18-27.

METAPHORS FOR CURRENT
SOFTWARE

BAD FEEDBACK

Software
ComplexityHardware

Complexity

BAD FEEDBACK

Software
Hardware

We design and invest in new
hardware because our software

is too slow.

We add to the software
because we now have capacity

to execute new features.

Rinse, repeat.

We stick with the same basic systems because of sunk costs.

A SHORT
COMMENT ON
OPEN SOURCE

Golly! How could that  
happen when all of us  

could see
the tracks?

Well, grab a hammer
and a shovel. We can

all work on it to make it
safe.

Again?

SO, NEXT BEST: TRUST
• “believe in the reliability, truth, ability, or strength of ”

• “allow someone to have, use, or look after something of
importance or value with confidence”

• “commit something to the safekeeping of ”

• “place reliance on (luck, fate, or something else over
which one has little control)”

CYBER… WHAT?
• Cyber security is the science and practice of protecting

information and information processing components from
misuse during their design, creation, transmission, storage,
transformation, use, and disposal.

• Information assurance is the science and practice of increasing
our confidence (trust) in the information security of a system.

• We need to use these two together.

FIRST ELEMENT: TRUST
ALIGNMENT

My goals &  
values

Employer  
goals &  
values

Social/Gov  
goals &  
values

Social/Gov  
goals &  
values

IDEAL TRUST ALIGNMENT

Employer  
goals &  
values

My goals &  
values

DYSFUNCTIONAL TRUST
ALIGNMENT

Employer  
goals &  
values

Social/Gov  
goals &  
values

My goals &  
values

Whose trust do  
we support?

COMPOUNDED TRUST
What are the  
limits of trust?

Supply chain…

Perhaps we can define
tunable attributes —
decompose security

& trust?

Lord Kelvin (William Thompson) wrote:

“When you can measure what you are
speaking about, and express it in numbers, you
know something about it; but when you cannot
measure it, when you cannot express it in
numbers, your knowledge is a meagre and
unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science.”

SO WHERE ARE OUR
SECURITY METRICS?

We don’t have useful ones.

We advertise gigabytes of storage, MIPS, # of
processors, $$ per system, MB/sec transfers …

Where are the measures of useful security
properties? Privacy properties?

TRADITIONAL VIEW
Confidentiality

IntegrityAvailability

But consider where it came from….It was for a marketing event, not
for designers. (Also created by Robert Courtney, btw.)

TRADITIONAL C-I-A VIEW

• Not a good model — measures aren’t orthogonal

• Integrity overlaps availability.

• Confidentiality assured by no availability

• Any one of them can be used to disable the third.

• Might as well use rock, paper, scissors

DONN PARKER’S HEXAD
Confidentiality

IntegrityAvailability

Control Authenticity

Utility

Some better insight, but not hugely better.

WHAT PROPERTIES DO WE
NEED?

• Which properties are fundamental?

• Correctness. Software & hardware should behave exactly as we specify it and do
nothing more.

• Without this, nothing else can be said

• So where do we start?

• Composable, trusted components:

• Simplicity — complexity breeds faults

• Specificity — if we don’t know what we want, we won’t get it

• Limited interactions — we can’t control what we don’ t know is happening

OTHER NEEDS
• Non-subvertable, parameterized access controls

• Non-interfering layering of authorities

• Intuitive, non-intrusive interface

• Useful, non-subvertable identification and tagging

• Standardized, hardened functions (e.g., crypto)

• Non-subvertable auditing

LIST OF PROPERTIES
• I can’t give you a more exact list. It’s a research

agenda that isn’t funded and isn’t being pursued.
(We’re too busy building Internet-enabled shoes
and toasters.)

• Each property should be well-defined, achievable
in some context, limited, and its output should be
measurable. The measures should be composable.

PROPERTIES
We have come close with some developments:

• Type-safe languages

• Formal methods and verification

• Reduced microkernel systems

• Multilevel. gate-based capability architectures.

None are cheap. None will run Word, Excel, and Firefox. All will required new
training, hardware, and more. Don’t hold your breath.

KEY TAKEAWAY: ONE SIZE
DOES NOT FIT ALL

• Robert Courtney ‘s 3 laws:

• Nothing useful can be said about
the security of a mechanism
except in the context of a specific
application and environment.

• Never spend more mitigating a
risk than tolerating it will cost you.

• There are management solutions
to technical problems but no
technical solutions to management
problems.

KEY TAKEAWAY: QUALITY,
FIRST

KEY TAKEAWAY: IF YOU DON’T KNOW
WHAT YOU’RE BUILDING, YOU’RE STUCK

WITH WHAT YOU BUILD

TAKEAWAY: SECURITY MUST
BE DESIGNED IN

• Adding it on afterwards
results in gaps

HOW WILL WE DEFINE
SECURITY?

Presentation copyright © 2015.
Free for noncommercial use with citation except note

some images have separate copyright.

Author’s email: spaf@purdue.edu

Remember that doing the same thing over and over
again expecting different results may be a sign of

insanity.

Here’s hoping you choose sanity.

